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CHAPTER 1. INTRODUCTION 

Since the beginning of civilization, the viability and economic success of communities 

have been, to a major extent, determined by the efficiency of the transportation infrastructure. To 

make informed transportation infrastructure planning decisions, planners and engineers have to 

be able to forecast the response of transportation demand to changes in the attributes of the 

transportation system and changes in the attributes of the people using the transportation system. 

Travel demand models are used for this purpose; specifically, travel demand models are used to 

predict travel characteristics and usage of transport services under alternative socioeconomic 

scenarios, and for alternative transport service and land use configurations. 

The need for realistic representations of behavior in travel demand modeling is well 

acknowledged in the literature. This need is particularly acute today as emphasis shifts from 

evaluating long-term investment-based capital improvement strategies to understanding travel 

behavior responses to shorter-term congestion management policies such as alternate work 

schedules, telecommuting, and congestion pricing. The result has been an increasing realization 

in the field that the traditional statistically oriented trip-based modeling approach to travel 

demand analysis needs to be replaced by a more behaviorally oriented activity-based modeling 

approach. 

1.1 TRIP-BASED APPROACH 

The trip-based approach uses individual trips as the unit of analysis and usually includes 

four sequential steps: trip generation, trip distribution, mode choice, and traffic assignment. The 

time of day when trips occur is either not modeled or is modeled in only a limited way in the 

trip-based approach. Most commonly, time is introduced by applying time-of-day factors to 24-

hour travel volumes at the end of the traffic assignment step or at the end of the trip generation 

step. The behavioral inadequacy of the trip-based approach, and the consequent limitations of the 

approach in evaluating demand management policies (Gordon et al. 1988; Lockwood and 

Demetsky 1994; Hanson 1980), has led to the emergence of the activity-based approach to 

demand analysis. 
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1.2 ACTIVITY-BASED APPROACH 

The activity-based approach to travel demand analysis views travel as a demand derived 

from the need to pursue activities distributed in space (Jones et al. 1990; Axhausen and 

Gärling1992). The approach adopts a holistic framework that recognizes the complex 

interactions in activity and travel behavior. The conceptual appeal of this approach originates 

from the realization that the need and desire to participate in activities is more basic than the 

travel that some of these participations may entail. By placing primary emphasis on activity 

participation and focusing on sequences or patterns of activity behavior (using the whole day or 

longer periods of time as the unit of analysis), such an approach can address congestion-

management issues through an examination of how people modify their activity participations 

(for example, would individuals substitute more out-of-home activities for in-home activities in 

the evening if they arrived early from work due to a work-schedule change?). 

The shift to an activity-based paradigm has also received an impetus because of the 

increased information demands placed on travel models by the 1990 Clean Air Act Amendments 

(CAAAs). These amendments require the inclusion of transportation control measures (TCMs) in 

transportation improvement programs for MPOs in heavily polluted non-attainment areas and, by 

state law, for all non-attainment areas in California. Some TCMs, such as high occupancy 

vehicle (HOV) lanes and transit extensions, can be represented in the existing modeling 

framework; however, non-capital improvement measures such as ridesharing incentives, 

congestion pricing, and employer-based demand management schemes cannot be so readily 

represented (Deakin 1993). The ability to model both individual activity behavior and 

interpersonal linkages between individuals, a core element of activity modeling, is required for 

the analysis of such TCM proposals. The CAAAs also require travel demand models to provide 

(for the purpose of forecasting mobile emission levels) link flows at a high level of resolution 

along the time dimension (for example, every 30 minutes or an hour as opposed to peak-period 

and off-peak-period link flows) and to provide the number of new vehicle trips (i.e., cold starts) 

that begin during each time period. Because of the simplistic “individual-trip” focus of the trip-

based models, they are not well equipped to respond to these new requirements (Cambridge 

Systematics Inc. 1994). Since the activity-based approach adopts a richer, more holistic approach 
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with detailed representation of the temporal dimension, it is better suited to respond to the new 

requirements. 

Activity-based travel analysis has seen considerable progress in the past couple of 

decades.  Several studies have focused on the participation of individuals in single activity 

episodes, along with one or more accompanying characteristics of the episode, such as duration, 

location, or time window of participation.  The effect of household interdependencies on 

individual activity choice is represented in these models in the form of simple measures such as 

presence of a working spouse, the number of adults, and household structure.   

Significant attempts have also been made to broaden the scope of earlier studies to 

examine activity episode patterns; that is, multiple activity episodes and their sequence over a 

particular time-span, typically a day.  Some of these studies focus only on activity episode 

scheduling and consider the generation of activity episodes and their attributes as exogenous 

inputs.  Other studies analyze both activity episode generation and scheduling, yielding more 

comprehensive activity-travel models.  Such comprehensive models can potentially replace the 

conventional trip-based travel demand models (see Guo and Bhat 2001 for a detailed review of 

the state of the art in activity-based research).  

1.3 RESEARCH OBJECTIVES 

The current project aims to advance the state of the art in daily activity-travel modeling.  

It represents one of the first attempts to comprehensively model the activity-travel patterns of 

workers as well as non-workers in a household. The activity-travel system will take as input 

various land use, socio-demographic, activity system, and transportation level-of-service 

attributes. It will provide as output the complete daily activity-travel patterns for each individual 

in the household. In addition to the short-term activity-travel decisions, longer term decisions 

about household location, employment and auto ownership will also be considered. The 

implementation procedure will recognize the dynamic land use-transportation interactions. 

Within the broader context of the research objective of the project, this report presents an 

overall conceptual framework for integrated land use-transportation modeling. The modeling of 

short-term activity-travel decisions and medium-term household decisions is discussed in detail. 

A conceptual framework is developed and is followed by representation frameworks for the 
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modeling of short-term activity-travel patterns that will be implemented in the project. The 

mathematical structures of the alternate model types that are proposed for use in the project are 

also presented. 

1.4 OUTLINE OF THE REPORT 

This report is organized as follows.  The next chapter discusses land use-transportation 

interactions and presents a conceptual framework for an integrated land use-transportation 

modeling system. Chapter 3 focuses on the modeling of medium-term decisions about household 

location, auto ownership and employment. Chapter 4 discusses the modeling of short-term 

activity-travel decisions. Chapter 5 presents the mathematical model structures for the different 

types of models. Chapter 6 provides the summary and conclusions. 
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 CHAPTER 2. THE PROPOSED INTEGRATED LAND USE -
TRANSPORTATION MODELING SYSTEM 

This chapter provides an overview of the influence of land use-transportation interactions 

and the interaction between different decision-making agents on the observed activity-travel 

patterns of individuals. A conceptual framework is proposed to model the different interactions. 

The advantages of econometric modeling over other modeling methodologies are discussed. 

Finally, the application of the model set in forecasting mode is described. 

2.1 LAND USE AND TRANSPORTATION 

It is conventional wisdom that land use and transport are intimately linked (see, for 

example, Mitchell and Rapkin 1954; Jones et al. 1983; Jones 1990; Banister 1994; Hanson 

1996).  While land use represents the spatial pattern of urban development and activities, 

transportation serves as the mechanism for spatial interaction between geographically dispersed 

activity sites.  Existing theories on land use-transportation interaction are largely based on the 

concept of accessibility, which refers to the ease of movement between places.  The level of 

accessibility within a given region is determined by the structure and capacity of the 

transportation system as well as the spatial distribution of opportunities for activity participation 

(i.e., the land use pattern).  A reduction in the cost of movement (in terms of either money or 

time) leads to increased accessibility to activity opportunities and hence an increase in travel 

demand.  As more interaction occurs, the land use pattern changes because more activities are 

generated and relocated to places that become more accessible.  On the other hand, the location 

of activities in space affects individuals’ activities and, in turn, travel patterns and the 

transportation system.  

2.2 UNDERLYING DECISION MAKERS 

The previous section describes interaction between land use and transportation at an 

aggregate level.  The description, however, does not focus on the underlying decisions of 

individual agents that manifest themselves in the form of the aggregate-level land use-

transportation relationships. 

As shown in Figure 2.1, the decision makers who have influence on the urban 

environment include the household residents, developers, businesses and institutions.  The 
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interactions among these decision makers are the true determinants of the land use-transportation 

relationship.  The developers convert vacant or developed land into urban activity centers, based 

on their profitability expectations.  The institutions impose constraints on development through 

policies such as zoning and infrastructure availability.   The developers and the institutions 

therefore largely determine the supply of locations for households and businesses.  Businesses 

and firms are providers of services as well as employment centers.  Their locations not only 

determine the flow of commodities, but also influence where people choose to reside and to 

conduct business transactions or other activities.  Households make long-term decisions such as 

residential location, work location, and auto ownership based on factors such as housing 

availability and accessibility to activities sites.  Conditional on these long-term decisions, 

households determine their activity agenda and schedules, which in turn determine their travel. 

 

 

 

 

 

 

 

 

Figure 2.1 Interactions among the decision makers that result in the observed land use-transportation interactions. 

2.3 A CONCEPTUAL FRAMEWORK FOR INTEGRATED LAND USE-
TRANSPORTATION MODELING 

This section provides a conceptual framework for integrated land use-transportation 

modeling (see Figure 2.2).  The short-term decisions about daily activity participation form the 

lowest level of models.  These decisions are conditional on the individual and household socio-

demographics and the activity-travel environment (i.e., the network configuration of roads, the 

transit system, and the location of opportunities for activity participation).  The socio-

demographics and the activity-travel environment are themselves a result of medium-term 

household decisions, evolution patterns, and policy decisions of institutions. 
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Figure 2.2 A Conceptual Framework for Integrated Land Use-Transportation Modeling 

The medium-term household decisions (such as those about employment, household 

location, and auto ownership) are modeled at a higher level prior to the modeling of activity 

patterns.  Analogous to the households, firms can also be considered to make medium-term 

decisions (such as those about establishment location and jobs per establishment).  The modeling 

of firm level decisions is not a primary focus of this work.  However, these decisions have to be 

accommodated in any comprehensive travel demand model system, as the medium-term 

decisions of household and firms are interdependent (through the job and land market 

mechanisms). 

The medium-term decisions are influenced by socio-demographic and economic 

evolution processes that take place continuously over time.  The demographic transition results 

from “a complex set of social and demographic changes that include aging, household formation, 

divorce and household dissolution, mortality, birth of children, migration to and from the region” 

(University of Washington, 2000).  The economic transition captures the growth or decline in the 

different job sectors.  These evolution patterns also influence the land use patterns and the 
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transportation system characteristics. They are therefore modeled at the highest level prior to the 

modeling of medium-term decisions. 

The activity-travel patterns of individuals lead to the spatial and temporal distributions of 

travel patterns.  These patterns, in turn, influence the medium-term decisions of individuals and 

firms and the land use and transportation policy decisions.  

2.4 PROPOSED APPROACH TO INTEGRATED LAND USE- TRANSPORTATION 
MODELING 

The primary methods that have been employed for the modeling of activity-travel 

behavior are econometric modeling methods and computational process models (CPMs).  

The family of econometric models including discrete choice models, hazard duration 

models, and limited-dependent variable models remains a powerful approach to activity-travel 

analysis and has led to several operational model systems.  Its strength lies in allowing the 

examination of alternative hypotheses about the causal relationships among behavioral 

indicators. A limitation of the econometric approach is that it may not comprehensively represent 

the decision mechanisms underlying the observed activity and travel choices (Kitamura 1996).    

Computational process models have been proposed as an alternative approach to 

modeling the complex activity-travel behavior.  A CPM is basically a computer program 

implementation of a production system model, which is a set of rules in the form of condition-

action (IF-THEN) pairs that specify how a task is solved (Gärling et al. 1994).  The modeling 

approach focuses on the process of decision making and captures heuristics and bounded 

rationality, as opposed to assuming overriding paradigms such as utility maximization.  Hence, 

the modeling approach potentially offers more flexibility than econometric models in 

representing the complexity of travel decision making.  A major drawback of CPMs, however, is 

that they lack a statistical error theory, which makes it more difficult to generalize their outcomes 

and apply them to policy evaluation (Ettema et al. 1996).  In addition, the models have very 

challenging data requirements for model estimation, application, and validation, and the 

assumptions they make about the search process have not been validated (Bowman and Ben 

Akiva 1996). 
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This research effort will use the econometric modeling approach for the modeling of 

short-term activity-travel patterns and medium-term household decisions.  The activity-travel 

models explore how activity and travel patterns are related to land use and socio-demographic 

characteristics of the traveler.  The medium-term decision models capture the effects of socio-

demographics, land use, transportation system, and the activity patterns of individuals on the 

choices about household location, auto ownership, and employment.  The econometric models 

predict the probability of decision outcomes. In theory, the econometric modeling approach can 

also be adopted for the modeling of socio-demographic and economic evolution patterns.  

However, these evolution patterns are too complex to characterize and thus are not modeled at 

the same level of detail as the medium- and short-term decisions.  

2.5 APPLYING THE INTEGRATED LAND USE- TRANSPORTATION MODELING 
SYSTEM 

The application of the econometric model system is based on an “incremental” prediction 

process.  In this approach, the socio-demographics and medium-term decisions, as well as 

activity-travel patterns, are predicted for a certain time increment beyond the base year (the base 

year refers to the year for which the socio-demographic and activity-travel characteristics have 

been synthesized for the entire planning region).  Once the demographics, medium-term 

decisions (such as employment and household location), and the activity-travel pattern of the 

individuals are predicted for the time increment beyond the base year, those predictions become 

the basis for the predictions for the next time increment.  This incremental prediction process 

continues until the predictions for the desired target year are obtained.  The reader will note that 

this incremental procedure recognizes the dynamic nature of decision making.  

The structure of the incremental forecasting procedure is presented in detail in Figure 2.3.  

The base year socio-demographics and the activity-travel environment serve as the inputs to the 

estimated modeling system.  The outputs from the activity-travel model represent the activity-

travel patterns for the base year.  The activity-travel patterns, along with the base year socio-

demographics and activity-travel environment, are used to compute the accessibility measures 

for the base year.  Subsequently, the base year socio-demographics, activity-travel environment, 

and the accessibility measures are used as inputs to the socio-demographic evolution and 

medium-term decision models to obtain predictions of the socio-demographic and activity-travel 
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environment characteristics for one time increment beyond the base year.  These predictions 

serve as inputs to the activity-travel model to predict the activity-travel patterns for one time 

increment beyond the base year.  The predicted attributes for one time increment beyond the base 

year are used to recompute new accessibility measures and predict the socio-demographics and 

activity-travel environment for two time increments beyond the base year.  This process 

continues until the activity-travel predictions for the target year are obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 2.3 Application of the Model System for Forecasting 

The application of the activity-travel, socio-demographic evolution, and medium-term 

decision models in Figure 2.3 has two steps, though this is not explicitly indicated in the figure.  

In the first step, the estimated models are used to obtain probabilistic predictions for the next 

time increment.  In the second step, these probabilistic predictions are translated into 

deterministic predictions using a micro-simulation procedure (see Bhat and Misra 2000 for a 

discussion of such a procedure).  
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The rest of the report will focus on detailed representation structures for the medium-term 

decisions and the activity-travel models.  The next chapter focuses on medium-term household 

decisions.  Chapter 4 provides the framework for modeling of short-term activity-travel decisions 

and Chapter 5 provides the mathematical model structures. 
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CHAPTER 3. MODELING MEDIUM-TERM HOUSEHOLD DECISIONS 

There are three major household medium-term decisions that influence land use and 

travel patterns: housing, work, and auto ownership.  The modeling of these decisions is discussed 

in this chapter. 

3.1 HOUSING CHOICE 

Housing decisions are often considered as a bundle of related choices, including the 

decision to move (mobility choice), the selection of tenure, and the selection of dwelling 

location.  From a behavioral point of view, these decisions could be made either sequentially or 

jointly.   

Factors expected to influence the mobility choice include the household income, stage of 

life cycle, number of full-time workers, and number of years each worker has held their current 

jobs (Waddell 1996).  Older or low-income households are less likely to move.  The presence of 

children might stimulate or inhibit a move, depending on the residential location.  The presence 

of multiple workers in a household may affect mobility in either way.  It could be argued that, 

because of the ripple effects of relocation on all workers, a multi-worker household will have a 

lower propensity to relocate.  Alternatively, one could also argue that more workers in a 

household means a higher likelihood that one of them will change jobs, resulting in a higher 

probability of a relocation.  The length of employment represents the other link between work 

and residence.  The longer the employment, the less likely it is that a household will move. 

Economic theories of housing tenure choice stress the role of the relative costs of rental-

and owner-occupied housing, particularly the effect of the tax system on relative costs (Rosen 

1979; King 1980).  Housing demand is also closely related to tenure choice.  People who want 

better quality housing are more likely to own.  Thus, wealthier households are more likely to 

afford to be able to buy housing and become homeowners.  Family background also has an 

important influence.  People whose parents are homeowners are more likely to become 

homeowners themselves, reflecting either the transfer of resources from parents to their adult 

children or the influence of the parents’ attitudes toward home ownership (Salvo and Ermisch 

1997). 
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Residential location choice is much more complicated than a simple trade-off between 

housing and accessibility.  Location preferences vary among households with different and even 

with similar socioeconomic and demographic characteristics.  Location choice depends on non-

spatial factors such as income of the household and housing and transportation costs.  It is also 

influenced by spatial factors such as the quality of nearby schools and proximity of parks.  

However, the physical distance has become less and less important with the dispersion of 

employment centers and increased personal mobility.  The information revolution with its 

computer networking and Internet is fast reducing the dominance of physical distance on housing 

location selection (Harvey 1991; Dear and Flusty 1998; Phe and Wakely 2000).  Other hard-to-

quantify factors that also affect location choice include ethnic preferences, racial biases, family 

loyalty to specific neighborhoods, and preferences for architectural styles.  Social status also has 

a significant role in the households’ decision-making process (Maclennan 1982), especially in 

societies with a strong stratified structure. 

 3.2 WORK LOCATION CHOICE 

The participation of household members in the labor market is important for the land use- 

transportation interactions for a couple of reasons.  First, individuals supply their time and skills 

in the labor market in exchange for wages, which form the major source of income used to pay 

for housing and other goods and services.  Second, work represents the most frequent destination 

of travel other than home.   

The monocentric model (Alonso 1964) underlying the standard urban economic theory 

and the gravity model derivatives originated from Lowry (1964) have both assumed that 

households’ decision about workplaces and residential locations are not related.  This assumption 

has come under increasing scrutiny (Waddell 1993).  Although individuals would not be 

expected to make simultaneous decisions regarding their residence and work locations, some 

individuals will make workplace decisions based on predetermined residence locations while 

others will make residence decisions on the basis of predetermined workplace locations.  The 

degree to which residence location is driven by workplace location, or vice-versa, may vary with 

the degree to which workplace locations are dispersed in a multinodal city, as well as household 

tenure, ethnicity, and socioeconomic status (Waddell 1993).  
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3.3AUTO OWNERSHIP CHOICE 

Vehicle ownership has been treated as an independent choice modeled within travel 

demand systems and influenced principally by socio-demographic characteristics of households 

(Waddell 2001).  This approach is deficient in accounting for effects of neighborhood 

characteristics and changes in transit services.  Thus, vehicle ownership should be examined 

together with other medium-term household choices regarding residence and workplace 

locations.   

3.4 MODELING FRAMEWORK 

The framework proposed for modeling the above listed medium-term household 

decisions is based on the random utility theory.  In short, households are assumed to make a 

rational decision by choosing the alternative that has the maximum utility value.  For instance, 

the utility of a residential location is measured by considering the relevant locational attributes as 

well as household preferences.  The neighborhood with the highest utility value will be chosen. 

As mentioned earlier, the medium-term household decisions are all inter related.  A 

change in an individual’s workplace location may trigger residential relocation.  The choice of 

tenure has an effect on the type and the location of housing.  Decisions about vehicle ownership 

may be made jointly with residential location choice.  In this research, alternate model structures 

with multiple tiers will be examined, both statistically and behaviorally, to determine the most 

suitable model for the joint estimation of medium-term household decisions.  The outcomes of 

the model can then be used as exogenous inputs to the modeling of household activity- and 

travel-decisions. 
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CHAPTER 4. MODELING SHORT-TERM ACTIVITY-TRAVEL 
PATTERNS OF INDIVIDUALS 

This chapter focuses on the modeling of activity-travel behavior of individuals.  The 

individual and household socio-demographics and the activity-travel environment characteristics 

are assumed to be exogenous inputs.  Medium-term decisions of employment choice, household 

location choice, and auto ownership are modeled prior to the modeling of activity patterns and 

consequently are assumed to be inputs to the activity modeling.  

This chapter first characterizes a typical activity string of workers and non-workers.  This 

is followed by the development of a conceptual framework that captures the choice hierarchy and 

the household interactions in the generation, allocation, and scheduling of activities.  Finally, 

representation frameworks for activity-travel patterns are presented, that can be implemented 

using readily available data from activity-travel surveys. 

4.1 WHAT CHARACTERIZES THE DAILY ACTIVITY STRING OF AN 
INDIVIDUAL? 

Individuals make choices about the different activities to be pursued in a day and string 

them together in an activity-travel pattern. Travel is derived from the need to participate in the 

desired activities.  The objective of this section is to completely characterize the daily activity-

travel strings of individuals. 

The activity pattern of workers rests on the regularity and the fixity of the work activity.  

No such obvious fixity is present in the case of non-workers (retired people and homemakers).  

Recognizing this critical difference, representations are developed separately for workers and 

non-workers.  The activity-travel patterns of students are characterized by the regularity of the 

school activity, analogous to the fixity of the work activity of the workers.  The activity-travel 

patterns of students can, therefore, be represented by a framework similar to that of workers.  

Hence, a separate representation for the activity-travel patterns of students is not presented in this 

report.  For both the worker and non-worker representations, we consider 3 a.m. as the beginning 

of the day and assume that the individual is at home during this time.  The following discussion 

of activity-travel representations for workers and non-workers is drawn from earlier works by 

Bhat and Singh (2000) and Bhat and Misra (2000).  
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4.1.1 Activity String of Workers 

The daily pattern of workers is characterized by four different sub patterns: a) The before 

commute pattern, which represents the activity-travel undertaken before leaving home to work; 

b) The commute pattern, which represents the activity-travel pursued during the home-to-work 

and work-to-home commutes; c) The work-based pattern, which includes all activity and travel 

undertaken from work; and d) The post home arrival pattern, which comprises the activity and 

travel behavior of individuals after arriving home at the end of the work-to-home commute.  The 

home-to-work and work-to-home commutes are grouped into a single commute pattern since the 

travel mode for both these commutes will, in general, be the same. Within each of the before- 

commute, work-based, and post home arrival patterns, there might be several tours.  A tour is a 

circuit that begins and ends at home for the before-commute and post home-arrival patterns, and 

is a circuit that begins and ends at work for the work-based pattern.  Further, each tour within the 

before-commute, work-based, and post home arrival patterns may comprise several activity 

stops.  Similarly, the home-to-work and work-to-home components of the work commute pattern 

may also comprise several activity stops.  Figure 4.1 provides a diagrammatic representation of 

the worker activity-travel pattern.  

The characterization of the complete workday activity-travel pattern is accomplished by 

identifying a number of different attributes within the representation discussed above.  These 

attributes may be classified based on the level of representation they are associated with: that is, 

whether they are associated with a pattern, a tour, or an episode.  Pattern-level attributes include 

the number of tours for the before-commute, work-based and post home arrival patterns, and the 

home-stay duration before the home-to-work commute for the commute pattern.  Tour-level 

attributes include the travel mode, number of stops, and home-stay duration before each tour in 

the before-commute and post home arrival patterns, work-stay duration before each tour in the 

work-based pattern, and the sequence of tours in the pattern.  Episode-level attributes include 

activity type, travel time from previous episode, location of episode, activity duration, and the 

sequence of episode in the tour. 
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Figure 4.1 Diagrammatic Representation of the Worker Activity-Travel Pattern 

 

4.1.2 Activity String of Non-Workers 

In the case of non-workers, the activity-travel pattern is considered as a set of out-of-

home activity episodes (or “stops”) of different types interspersed with in-home activity stays.  

The chain of stops between two in-home activity episodes is referred to as a tour.  The pattern is 

represented diagrammatically in Figure 4.2.  A non-worker's daily activity-travel pattern is 

characterized again by attributes associated with the entire daily pattern, a tour in the day, and an 

episode.  Pattern-level attributes include whether or not the individual makes any stops during 

the day, the number of stops of each activity type if the individual leaves home during the day, 

and the sequencing of all episodes (both stops and in-home episodes).  The only tour-level 

attribute is the travel mode for the tour.  Episode-level attributes include the episode duration, 

travel time to episode from previous episode (except for the first home-stay episode), and the 

location of out-of-home episodes (i.e., stops).   
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Figure 4.2 Diagrammatic Representation of the Activity-Travel Pattern of Non-workers 

 

4.2 GENERATION-ALLOCATION-SCHEDULING OF DAILY ACTIVITY-TRAVEL 
DECISIONS WITHIN A HOUSEHOLD: A CONCEPTUAL FRAMEWORK 

 The decision of individuals to participate in activities is motivated by both 

individual and household needs.  The scheduling of activities of workers is primarily constrained 

by the need to be at work for a pre-determined period of the day.  In addition, the sequencing and 

scheduling decisions of individuals (both workers and non-workers) are constrained by joint 

activity participation and the need to share the household autos for trip making.  This section 

develops a framework for the daily generation, allocation, and scheduling decisions that occur at 

the household level.  Figure 4.3 presents this framework diagrammatically. 
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Figure 4.3 A Diagrammatic Representation of the Generation-Allocation-Scheduling Decisions within a Household 

 
On any workday, individuals choose to undertake a set of “mandatory” activities.  These 

are typically work-related activities that have to be pursued daily, based on long-term decisions 

about employment.  Conditional on these mandatory activities, a set of personal and household- 

level “flexible” activities for the day is generated.  These include activities such as personal 

business, shopping, and recreation.  Constrained by mandatory and flexible activities that the 

individuals have decided to undertake, the household activities are distributed among the 

members of the household.  Some activities may require joint participation of the household 

members.  If the household does not have an auto for each adult, decisions about auto use are 

also made depending on the sets of activities to be pursued by the different individuals during the 

course of the day.  Certain members of the household may choose to undertake additional “serve-

passenger” trips to facilitate activity participation of other household members. 

The individuals in the household sequence the activities into their activity-travel string 

while ensuring that the constraints placed by mandatory activities and joint activities are 
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satisfied.  The outcome of this complete generation-allocation-scheduling process is the complete 

activity-travel pattern of all the individuals in the household.  The process essentially defines all 

the attributes that characterize the activity-travel pattern as it is defined in the previous section.  

The daily decisions subsequently influence the medium- and long-term decisions, leading to an 

evolution in the activity participation behavior over time. 

 
4.3 REPRESENTATION FRAMEWORKS FOR MODELING ACTIVITY-TRAVEL 
PATTERNS OF INDIVIDUALS 

The conceptual framework presented above provides a “natural” way to visualize the 

activity-travel generation of individuals within a household context.  The generation-allocation-

scheduling approach captures inter personal dependencies in terms of joint activity participation 

and the delegation of tasks among the members of a household.  It also explicitly considers the 

sharing of autos in making trips.  

The implementation of the above approach would require explicit modeling of generation 

and allocation decisions of the household.  Most of the household activities like shopping and 

recreation are of the “flexible” type and are not pursued on a daily basis.  A household’s decision 

to participate in such an activity on any day depends on the time that has passed since the last 

participation in the same activity.  Hence, modeling these decisions requires data about the 

activity participation of the household members over several consecutive days.  For the current 

research, only a single-day activity-survey data is available.  Therefore, it is not possible to 

explicitly model the generation-allocation mechanisms.  Nonetheless, the interpersonal 

dependencies within the household need to be considered in the modeling process.  

This section provides representation frameworks for modeling the individual activity- 

travel patterns within the context of a single-day’s survey data.  In this proposed approach, the 

individuals’ decisions are modeled.  An individual’s decisions include decisions about all the 

attributes that characterize the individual’s activity string (e.g., number of tours and number of 

stops in each tour).  In making these choices, the individual is assumed to consider all his or her 

personal and household needs for the day and recognize the constraints imposed by joint 

participation needs and auto-sharing requirements.  Thus, in the representation frameworks 

subsequently presented, the generation-allocation mechanism is implicitly incorporated into 
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Category 
Name

% in the 
DFW data 

set Description
Type 1 20.50% HH with a single adult, the adult is a worker
Type 2 10.30% HH with a single adult, the adult is a non-worker
Type 3 8.60% HH with two adults, both are non-workers
Type 4 22.70% HH with two adults, one is a worker and the other is not 
Type 5 24.30% HH with two adults, both are workers

Category 
Name

% in the 
DFW data 

set Description
Type 1 20.50% HH with a single adult, the adult is a worker
Type 2 10.30% HH with a single adult, the adult is a non-worker
Type 3 8.60% HH with two adults, both are non-workers
Type 4 22.70% HH with two adults, one is a worker and the other is not 
Type 5 24.30% HH with two adults, both are workers

individual decisions.  For example, if a particular member of a household decides to make a 

shopping stop, it can be inferred that the household decided to undertake a shopping activity for 

the day and assigned it to this person.  

The nature of inter personal interactions and hence the complexity of the framework 

depends, to a large extent, on the composition of the households.  It is very difficult to develop a 

generic representation framework to capture the interactions for all possible household types.  

Hence, the most common types of household are identified based on an empirical analysis of the 

households in the Dallas Fort Worth data set (Table 4.1). 

Table 4.1 Major Household Categories Identified from Dallas Fort Worth Data Set 

 

 

 

 

The five types together constitute about 87% of all household types.  The following 

sections describe representation frameworks for modeling the activity patterns of individuals in 

each of these household types. 

4.3.1 A Representation Framework for Individuals in Type 1 Households 

The framework developed by Bhat and Singh (2000) can be adapted easily to model this 

type of household.  The representation framework is based on modeling the pattern/tour-level 

attributes first (Figure 4.4), and then modeling the stop-level attributes (Figure 4.5) conditional 

on the pattern/tour-level attributes.  The number of tours in the before-commute, work-based, 

and post home-arrival patterns, and the sequence of tours in these patterns, are implicitly 

modeled in Figure 4.4 by determining if an individual makes a first tour, and then, conditional on 

making the first tour, if the individual makes a second tour (in concept, the procedure can be 

extended to more than two tours in a pattern).  Similarly, the sequence of stops in a tour is 

modeled implicitly in Figure 4.5 by determining the characteristics of the first stop, then the 

second conditional on the first, the third conditional on the first two, and so on. 
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Figure 4.4 Framework for Modeling Pattern- and Tour-Level Attributes 

 

 

 

 

 

 

 

 

 

Figure 4.4 Framework for Modeling Stop-Level Attributes 

The commute mode choice and the number of commute stops can be modeled using a 

joint unordered-ordered discrete choice model system.  For example, Bhat and Singh (1997) 

have recently developed a joint model of mode choice in the evening commute, the number of 

evening commute stops, and the number of stops in the post-home arrival tour using such a 

methodology.  The duration of home stay before each tour may be modeled using hazard-based 
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duration models (see Hamed and Mannering 1993 and Bhat 1996 for use of such models to 

examine activity duration).  The joint activity-type choice, activity duration, and travel time 

duration may be modeled (separately for each of the periods) using a joint discrete/continuous 

econometric system (see Bhat 1998a for the estimation and application of such a joint model for 

the evening commute period).  The joint modeling approach allows for spatial-temporal 

interactions in stop-making decisions.  The location choice of the stop can be modeled 

subsequently using disaggregate spatial destination choice models (Fotheringham 1988) by 

identifying all possible destinations that can be reached by the travel mode assigned for the tour 

(of which the stop is a part) and within the travel time duration estimated earlier. 

 
4.3.2 A Representation Framework for Individuals in Type 2 and Type 3 Households 

These types of households are characterized by the absence of workers and children.  For 

the single-adult households with the adult not working (Type 2), the representation framework 

developed by Bhat and Misra (2000) can be directly applied.  The households with two adults; 

both non-workers (Type 3), may typically represent elderly people living together.  The two can 

be assumed to pursue almost all activities together, such that a single activity string can represent 

their activity pattern.  Hence the Bhat and Misra framework can again be directly applied. 

The modeling of a non-worker’s daily pattern is achieved by modeling the pattern-level 

attributes first, followed by the tour-level attribute of mode choice, and finally the episode-level 

attributes.  This hierarchical approach is adopted because the decisions regarding pattern-level 

attributes are driven by the basic activity needs of the individual (and the household of which the 

individual is a part).  Consequently, and consistent with the derived demand philosophy of the 

activity-based approach, the pattern-level decisions are considered to be the highest level of the 

analysis hierarchy.  On the other hand, decisions regarding the episode-level attributes tend to be 

driven primarily by scheduling convenience, short-term temporal constraints, and travel 

conditions.  Consequently, these attributes are relegated to the lowest level of the analysis 

hierarchy.  The tour-level attribute of travel mode choice is positioned at the intermediate level 

of the analysis hierarchy since it affects the attributes of all out-of-home episodes within the tour. 
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The pattern-level attributes are modeled using a system of three model components 

(Figure 4.6).  The first model component, which takes the form of a bivariate binary-ordered 

response probit formulation, jointly models the decision to make at least one stop (instead of 

staying at home for the entire day) and the decision of the number of stops if the individual 

leaves home during the day.  The second model component, which uses a multinomial logit 

formulation for stop type, partitions the total number of stops (determined in the first model 

component) into the number of stops by each out-of-home activity type.  The final model 

component, which has a multinomial logit form with a pattern string as the unit of analysis, 

models the number of in-home episodes in an individual’s activity-travel pattern along with the 

entire sequence of all episodes (in-home and out-of-home) in the individual’s activity pattern, 

given the number of stops by type in the pattern. 

 

 

 

 

Figure 4.6 Framework for Modeling the Pattern-Level Attributes 

Figure 4.7 presents an overview of the four remaining model components used to analyze 

the tour- and episode-level attributes.  The tour travel mode is modeled using a discrete choice 

formulation.  Since the duration of the first home-stay episode is likely to be different from other 

subsequent home-stay episodes because of life style and sleeping habits, the first home-stay 

duration is modeled prior to all other episode-level attributes using a hazard model.  Next, the 

travel time to the episode from the previous episode and the activity duration of the episode for 

all episodes other than the first home-stay episode are modeled jointly.  Finally, the spatial 

location of each out-of-home episode (stop) is modeled using a disaggregate spatial destination 

choice model. 
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Figure 4.7 Framework for Modeling the Tour- and Episode-Level Attributes 

4.3.3 A Representation Framework for Individuals in Type 4 Households 

Type 4 households consist of two adults, one of whom is a worker and the other of whom 

is not.  The framework for the modeling of the activity-travel patterns of individuals in this type 

of household is drawn primarily from the approaches developed independently for the modeling 

of the activity-travel patterns of workers and non-workers (Figure 4.8).  

The commute mode choice and the number of non-work commute stops made by the 

worker are modeled first.  The commute stops are further classified into personal and serve- 

passenger stops.  The decision of the non-worker to stay at home all day as opposed to making 

activity stops is then modeled.  Conditional on these high-level choices, the worker makes tour-

level choices.  It is assumed that the worker can engage in activity participation jointly with the 

non-worker in the household only during the pre-work and post home-arrival periods (hence, the 

individual pursues none of the work-based activities jointly with other household members).  It is 

also assumed that entire tours are pursued alone or jointly.  This adds another tour-level attribute 

for the before-commute and post home-arrival patterns of workers.  If the worker chooses to 

undertake joint tours, the corresponding times are “blocked out” for the non-worker.  The 

number of “personal” stops and the sequence of all stops are then modeled for the non-worker in 

the household.  The stop-level attributes of the stops the non-worker makes jointly with the 

worker are inferred from the choices made by the worker.  The tour- and stop-level attributes of 

the non-worker are finally modeled to complete characterizing the activity string of both the 

worker and the non-worker.  In essence, decisions about all the attributes of activities jointly 
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undertaken are assumed to be made by the worker.  The household auto is assumed to be 

available for the use of the non-worker if the worker does not use it at the given time.  School 

going children, if present in the house, are assumed not to make any travel decisions by 

themselves.  Their choice of mode to school is incorporated into the decision of either the worker 

or the non-worker. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Framework for Modeling the Activity-Pattern of Individuals in Type 4 Households 

4.3.4 A Representation Framework for Individuals in Type 5 Households 

This type of household is characterized by the presence of two working adults.  In the 

modeling approach, the more constrained of the two workers is first identified.  The commute 

mode choice and the number of commute stops made by this person are first modeled.  The 

commute characteristics of the other worker are modeled next.  It is assumed here that the two 

working adults have their own autos and hence can independently choose the mode for their 

commute and other trips.  The trip-level characteristics of the constrained worker are modeled, 
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conditional on the commute characteristics of the two workers.  Similar to assumptions made in 

the modeling of activity-patterns of individuals in Type 4 households, joint participation is 

assumed to be possible only before and after work.  Also, entire tours are assumed to be made 

jointly or independently.  The trip-level characteristics of the less-constrained worker are 

modeled next. Conditional on the trip-level characteristics of the two workers, the stop-level 

attributes of the stops made jointly are modeled.  Subsequently, the stop-level attributes of the 

personal stops made by the two workers are modeled independently.  Again the school going 

children are not assumed to make any trips by themselves.  Their mode choice is incorporated 

into the decision of either worker. 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.9 Representation Framework for Modeling Activity-Travel Patterns of Individuals in Type 5 Households 
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CHAPTER 5. ECONOMETRIC MODELS  

This chapter provides the mathematical formulations for the different model components 

that comprise the integrated land use-transportation modeling system described in the previous 

chapters. 

5.1 JOINT UNORDERED-ORDERED DISCRETE CHOICE MODELS 

Joint unordered-ordered discrete choice models involve the joint modeling of an 

unordered choice (e.g., mode choice for a tour or commute) and one or two ordered choices (e.g., 

number of stops).  Bhat and Singh (1997) have adopted this joint unordered-ordered discrete 

choice economic structure for the joint modeling of work-to-home commute mode choice, the 

number of non-work commute stops, and the number of stops in the first tour of the post home 

arrival pattern.  The ordered response formulation for the number of stops recognizes the ordinal 

and discrete nature of stops.  The economic structure is presented here in this context.  

In the following model structure, index i is used to represent mode (i=1,2,3…I), index k 

to represent the number of non-work work-to-home commute stops (k=1,2,3…K), index l to 

represent the number of post-home arrival stops (l=1,2,3…L), and index q to represent the qth 

individual (q=1,2,3…Q). The equation system is then as follows: 

 

i,l
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if
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maxifchosen  is  mode ,

         (Eq.1) 

 

*
qiu  is the indirect (latent) utility that the qth individual derives from using the ith mode; 

*
qis is the (latent) work-to-home commute stop-making propensity of the qth individual should 

s/he use the mode I; qis is the number of work-to-home commute stops on the choice of mode i 

to work ( qis is unobserved for the non-chosen modes); *
qiw is the (latent) post home arrival stop- 

making propensity of the qth individual should s/he use the mode I; and qiw is the number of 

work-to-home commute stops on the choice of mode i to work ( qiw is unobserved for the non-



32 

chosen work modes).  qis is characterized by the evening commute stop-making propensity *
qis  

������������	�
����
��	��������	���������	���
���������	�
�	����	��
������	�������������
�	����

exists among *, qiqi ww ��������������	�
����
��	������	�����������	�� qiqiqi  y,  , xz and are column 

vectors of exogenous variables, and iii �,  , ��  and  are corresponding column vectors of 

parameters to be estimated.  We assume that the sqi 'ε  are identically and independently extreme-

value distributed (with a location parameter of zero) across alternatives i and individuals q (the 

assumption of independent error distribution across alternatives can be relaxed to accommodate 

nested logit models of mode choice; the assumption of independence is maintained here for 

simplicity of presentation).  qiqi   λη and are assumed to be identically (and independently) normal-

distributed across individuals q and modes i, each with a standard normal distribution function. 

 Let qiR  be a dummy variable; qiR =1 if the ith mode is chosen by the qth 

individual for his/her work travel, and qiR =0 otherwise. Define 

{ } .
*

,..2,1
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≠=
       (Eq. 2) 

Equation 1 can now be structured as: 
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   (Eq. 3) 

 

The jointness in the three choices (work mode, number of home-to-work commute stops 

and number of post home arrival stops) arises because of potential correlation among the random 

components ), �, �(� qiqiqi .  The key to accommodating these correlations is to transform the 

random variable qiν  into a standard normal random variable *
qiν as follows: 

( )[ ] ,�F�� qii
*
qi

1−=                  (Eq. 4) 

������������	�����	���������
�������	������
�������
������Fi is the multinomial distribution 

function of qiν , implied by Equation 2 and the assumed iid extreme value distribution for the 
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sqi 'ε . Now, since ( )qiiqi F νν =Φ )( *  by construction (see Equation 4), we can specify a trivariate 

distribution L3 for qiqiqi �, , ��  and  having the marginal distributions Fi(.) for qiν �����������
��

qiqi   λη and , as: 

),,,,,(),,,,,( *
33 iiiiiiiiiiii vvqiqiqivvqiqiqiL ληληληλη ρρρληνρρρλην Φ= ,  (Eq. 5) 

�������3(.) denotes the trivariate normal distribution.  From Equations 3 and 5, the joint 

probability of choosing mode i, number of work-to-home commute stops k, and number of post 

home arrival stops l for the individual q is: 
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            (Eq. 7) 

The parameters to be estimated in the joint model are the  (K-1) ki,δ  parameters 

),( ,0, +∞=−∞= Kii δδ , the (L-1) li,θ  parameters ),( ,0, +∞=−∞= Lii θθ , and the vector 

'''' ),,,,,(
iiiiii vviii ληλη ρρραγβ  for each mode i (as structured, qiqi y x  and  do not include a constant).  

Defining a set of dummy variables, 

otherwise 0           

212121                                                   

stops arrival homepost and stopshome-to-workmakesindividual if1
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  l   k  q   M qkl

===

=

(Eq. 8) 

the log likelihood function for the estimation of the parameters in the model takes the form 
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If 
iiiiii ���v�v �, , ��  and are equal to zero for each and every mode i, then the likelihood in 

Equation 9 partitions into a component corresponding to that of a multinomial logit model for 

mode choice, a second component that represents an independent univariate ordered response 

model of number of work-to-home commute stops by the chosen work mode, and a third 

component that represents an independent univariate ordered response model of the number of 

post home arrival stops by the chosen work mode.  

5.2 HAZARD-BASED DURATION MODEL  

Hazard-based duration models focus on an end-of-duration occurrence (such as home 

stay or work stay) given that the duration has lasted to some specific time.  The concept of 

conditional probability of “failure” or termination of activity duration recognizes the dynamics of 

duration; that is, it recognizes that the likelihood of ending a home-stay or work-stay depends on 

the time since the start of home-stay or work-stay (Bhat 2000).  To include an examination of 

covariates, which affect the duration time, most studies use a proportional hazard model, which 

operates on the assumption that covariates (exogenous variables) act multiplicatively on some 

underlying or baseline hazard. 

This methodology has been adopted by Bhat (1996) in the modeling of the duration of the 

shopping activity and by Misra (1999) in the modeling of the home-stay durations before each 

tour made by non-workers.  The econometric modeling structure is presented in the former 

context here. 

Let Tq represent the continuous activity duration for the individual q (we consider the 

time unit of the continuous scale to be in minutes).  The hazard for individual q at some specific 

time u on the continuous time scale )(uqλ is defined using the proportional hazard specification 

as: 

[ ]
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|
lim)( '
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δ
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,  (Eq. 10) 
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where )(0 uλ  is the baseline hazard (to be estimated assuming a non-parametric distribution) at 

time u, xq is a column vector of covariates for individual q (not including a constant), � is a 

column vector of parameters (to be estimated) and wq is an unobserved heterogeneity term.  It 

can be shown that Equation 10 can be written in the equivalent form, 

qqq

T

q wxduuT
q

εβλ ++==Λ ∫
0

'
00 )(ln)(ln     (Eq. 11) 

where qε takes the extreme value form with the distribution function given by: 

[ ])exp(exp1)()Pr( zzGzq −−==<ε      (Eq. 12) 

This continuous duration is not observed; instead, we only observe discrete time intervals 

(say, 5-minute periods) in which the failure (i.e., end of participation in activity) occurs.  Let the 

discrete time intervals be represented by the index k (k=1,2…. K) and uk be the continuous time 

value representing the upper bound of the discrete time period k.  Therefore, 

[ ] [ ] [ ]∞∈=∈=∈= ,u K if u k , .......,,uu  if u, ko,u  if uk K-1211 21 . 

Let tq represent the discrete period of failure for individual q (thus, tq =k if the home- or 

work-stay duration for individual q ends in period k).  The objective of the duration model is to 

estimate the temporal dynamics in duration (that is, how the elapsed time since the start of the 

activity impacts the future termination of the activity) and the effect of covariates (or exogenous 

variables) on the continuous activity duration.  We can write,  
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Ignoring the unobserved heterogeneity term wq in the above equation leads to a simple 

ordered-response discrete choice structure.  This simplifies the estimation and may be an option 

to consider initially, recognizing that such a procedure may bias parameter estimates and 
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subsequent duration predictions.  The procedure presented below describes the estimation 

process when the unobserved heterogeneity term wq is considered and is assumed to be non-

parametrically distributed. 

We can approximate the distribution of wq by a discrete distribution with a finite number 

of support points (say, S).  Let the location of each support point (s=1,2…S) be represented by ls 

and let the probability mass at ls be 	s.  Then, the unconditional probability of an individual q’s 

home- or work-stay “failing” in period t is 

[ ] [ ]{ }∑
=
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' )()( πβδβδ     (Eq. 14) 

The sample likelihood function for estimation of the location and the probability masses 

with each of the S support points, and the parameters associated with the baseline hazard (i.e. (K-
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  (Eq. 15) 

Since we already have a full set of (K-1) constants represented in the baseline hazard, we 

impose the normalization that 

0)(
1

==∑
=

s

S

s
sq lwE π      (Eq. 17) 

Our estimation procedure ensures that the cumulative mass over all support points sums 

to one. 
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One critical quantity in empirical estimation of the distribution of unobserved 

heterogeneity is the number of support points, S, required to approximate the underlying 

distribution.  This number is determined by using a stopping rule procedure based on the 

Bayesian Information Criterion (BIC), which is defined as follows: 

),ln(5.0)ln( NRLBIC ⋅⋅+−=    (Eq. 18) 

where the first term on the right hand side is the log likelihood at convergence, R is the number 

of parameters estimated and N is the number of observations.  As the support points are added, 

the BIC value keeps declining until a point is reached at which the addition of a support point 

results in an increase in the BIC value.  Estimation is terminated at this point, and the number of 

support points corresponding to the lowest value of BIC is considered the appropriate number for 

S. 

5.3 JOINT DISCRETE/CONTINUOUS ECONOMETRIC SYSTEM 

The joint modeling of activity type (discrete choice), activity duration (continuous 

duration), and travel time (continuous choice) for each stop can be modeled using a 

discrete/continuous econometric system.  Such a methodology has been adopted by Bhat (1998b) 

for the modeling of post home-arrival activity participation behavior of workers. The estimation 

procedure presented below uses the full information maximum likelihood estimation technique.  

In the following presentation of the model structure, we will use the index i (i=1,2…I) to 

represent activity-type choice. The index q (q=1,2…Q) is used to represent individuals. The 

equation system can be written as: 
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  (Eq.19) 

*
qiu  is the indirect (latent) utility that the qth individual derives from participating in out-

of-home activity-type I; qia is the logarithm of the activity duration of participation in activity 

type i for the qth individual; and qit is the logarithm of the travel time duration associated with 
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participation in activity type i for the qth individual. qiqiqi y,, xz  and  are column vectors of 

exogenous variables, and iii �, , ��  and  are corresponding column vectors of parameters to be 

estimated.  We assume that the sqi 'ε  are identically and independently distributed (with a 

location parameter of zero) across alternatives i and individuals q.  The s s w qiqi 'and' η are 

assumed to be identically distributed across individuals.  We specify a bivariate cumulative 

normal distribution function ),,,0,0( 22
2 iiii ww ηη ρσσΦ for qiqi  w η and in each activity type i. 

22 and
ii �w  � � are the variances of the error terms ii  and w η  respectively and 

iiwη
ρ is the correlation 

between the two error terms. 

The continuous variables qia  and qit  are observed if and only if the ith activity type is 

chosen. Let Rqi be a dichotomous variable; Rqi =1 if the ith alternative is chosen by the qth 

individual and Rqi =0 otherwise. Defining 

{ } ,max *

,..2,1
qiqj

ijIj
qi u εν −=

≠=
     (Eq. 20) 

the utility maximizing condition for the choice of the ith alternative may be written as  

qiqi
'
iqi �z � R >=  ifonly  and if1    (Eq. 21) 

Thus, we now have the situation that qia  and qit  are observed if and only if qi
'
iqi z� � < . 

The non-normal random variable qiν  is transferred into a standard normal random variable as: 
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Let the correlation between qiqi  w and*ν be 
iwρ and between qiqi   ην and*  be 

iη
ρ . Combined 

with the assumed marginal bivariate distribution for ii   w ηand  and the standard normal 

distribution of *
qiν , we obtain a trivariate normal distribution of ),,( *

qiqiqi w ην for each activity 

type i with a mean vector of zero and variance covariance matrix: 
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The parameters to be estimated are the �i parameters in the activity-type choice model 

and the following parameters in the activity duration and travel-time duration equations for each 

activity regime i: ) � ,�,�,�,�,�(�
iiiiii w��w�wii and .  Define the following quantities for each out-of- 

home activity type i: 
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The likelihood function to be maximized is: 
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  (Eq. 26) 
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5.4 DISAGGREGATE DESTINATION CHOICE MODEL WITH TIME-BASED 
PROBABILISTIC CHOICE SET GENERATION 

The destination choice model adopted by Misra (1999) uses the travel time distribution 

by the chosen mode to generate a probabilistic choice set of candidate destinations.   

The (logarithm of) travel time to a stop is estimated as a continuous normally distributed 

variable in Equation 19.  The first step in the probabilistic choice set generation for destination 

choice is to define discrete intervals on this logarithmic scale.  The length of the discrete time 

intervals can vary and can be made as narrow as desired.  But the length of each interval should 

be sufficiently wide to include at least two candidate destination zones from any origin zone.  Let 

there be (K+1) discrete time intervals defined on the logarithmic scale as follows: 

),(),,).....(,),......(,(),,(),,( 1132211 +∞−∞ −− KKKkk tttttttttt . 

Consider an individual q at a particular zone and let tq be the (logarithm of) travel time to 

his or her next stop. Let Cqk (k=1,2…K) be the set of destinations such that the travel times of the 

individual from the origin zone to these destinations fall within the interval ),( 1 kk tt − .  By 

definition each destination i can belong to one and only one Cqk.  From the distribution of tq 

determined earlier, we can write the probability of the choice set Cqk as 

,
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π    (Eq. 28) 

where )( qtE is the expected value of the logarithm of travel-time duration for the qth individual 

and tσ is the estimated standard error of the travel-time duration.  By construction, 
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π
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      (Eq. 29) 

Assume that the total utility derived by person q in choosing destination i is given by 

iqiqiq VU ε+= , where iqV represents the systematic utility and iqε is the stochastic error term 
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assumed to be Gumbel distributed.  The conditional probability that destination i is chosen given 

the choice set Cqk of which i is a part therefore takes the multinomial logit form: 

( )
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Cj
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qkq
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V
) (i|CP

qk
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=
∑
∈
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exp

exp

      (Eq. 30) 

The systematic component of the utility function in the above expression is assumed to 

have a linear-in-parameters form and hence can be written as iqiq xV 'β= .  Here, iqx  is the vector 

of exogenous variables and β is the vector of parameters to be determined. 

 The unconditional probability of choice of destination is: 

  )P(i|CiP
k

qkqkq ∑= .)( π       (Eq. 31) 

Define 1=iqδ if individual q chose destination i, 0 otherwise. The log likelihood function 

can therefore be written as 

( )∑∑=
q j

qjq jPL )(loglog δ .     (Eq. 32) 

5.5 BIVARIATE BINARY-ORDERED RESPONSE PROBIT MODEL 

This methodology is used for the joint modeling of a binary response variable and an 

ordered response variable.  This can be applied in the joint choice modeling of an individual’s 

decision to participate in at least one out-of-home activity (binary) and the number of stops 

undertaken over the whole day (ordered variable) (Misra 1999).  The joint modeling recognizes 

the fact that there may be factors common to the propensity to go out and the propensity to make 

many stops.  The modeling methodology presented here is in this context.  

Let the index i represent the ith person (i=1,2…I).  Define a binary variable io  and an 

integer variable is  as 
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   (Eq. 33) 

where, K is a pre-defined integer that represents the maximum number of stops that may occur in 

an individual’s activity string.  

The equation system can be expressed as  
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*
io  is the latent propensity for non-worker i to make at least one out-of-home activity stop 

and *
is is the (latent) stop making propensity of the ith individual should s/he decide to make at 

least one out-of-home activity stop.  is  is characterized by the stop-making propensity *
is  and the 

����	�
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��	��������	���������	���
���������	�
�	����	��
���� ii  x z and  are column vectors of 

exogenous variables, and  �and �  are corresponding column vectors of parameters to be 

estimated.  We assume that the stochastic error terms ii   νε and are each standard normal 

��	���������
����������	
���������	�����	���������
�������	������
�������
�����!���� be the 

covariance between the two error terms for each person.  Hence, the joint distribution of the two 

random variables ii   νε and ��	��������������
�������	������
����2(.) is the bivariate normal 

distribution function), with means of the two variables equal to zero, variance equal to 1 and the 

covariance between the two variables equal to �.  

The unconditional probability of stop making can therefore be expressed as 
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Based on construction, the following relations hold: 
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The parameters to be estimated in the joint model are the  (K-1) kψ  parameters 

),( 0 +∞=−∞= Kψψ and the vector ),,( ργβ . Defining a set of dummy variables, 

otherwise0
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the log likelihood function for the estimation of the parameters in the model takes the form 
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If the covariance term is zero, the likelihood function decomposes into two components: 

one for modeling the choice of making at least one out-of-home activity stop (a binary probit 

model) and a second for modeling of the number out-of-home activity stops (an ordered response 

probit model). 

5.6 SIMULTANEOUS EQUATION SYSTEM 

The simultaneous equation system can be used for the joint modeling of two or more 

continuous variables.  Misra applied this methodology for the joint modeling of travel time and 

activity duration for non-workers (1999).  The model structure is discussed in this context here. 

In the following presentation of the model structure, we will use the index k (k=1,2…K) 

to represent activity-type.  The index i (i=1,2…I) is used to represent individuals.  The travel 

time and the activity duration for any individual i can be written as: 

,....K ,for k 
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ikt is the logarithm of the travel time duration associated with participation in activity type k for 

the ith individual and ika  is the logarithm of the activity duration of participation in activity type 

k for the ith individual.  ikik  and yx  are column vectors of exogenous variables and kk  and ��  are 

corresponding column vectors of parameters to be estimated.  The stochastic error terms 

ikik  and w η are assumed to be identically distributed across individuals.  We also assume that 

kk  and w η , corresponding to activity k, have a bivariate cumulative normal distribution with 

parameters given by ),,,0,0( ,
22

2 kwkkwk ηη ρσσΦ , where 22
��wk  and �� are the variances of the error 

terms respectively and kwk ηρ , is the correlation between the two error terms. 

The vector of parameters to be estimated is )and �,�,�,�(� kwk��wkkk η, .  Define the 

following quantities for each out of home activity type k: 
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The probability that individual i, who performs activity type k, has travel time ikt  and 

activity duration ika  is given by 

( )kwkikikikikik lglgP ηρ ,2 ,,),( Φ=      (Eq. 41) 

Defining a dumm������������ik that takes a value 1 if individual i participates in activity 

type k and 0 otherwise, the log likelihood function to be maximized is: 
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5.7 MODELING STOP FREQUENCY BY ACTIVITY TYPE FOR NON-WORKERS 

The methodology presented here is adopted in the modeling of the number of stops by 

activity type for non-workers, given the total number of stops made by the individual over the 

day (Misra 1999).  

Let the probability that an individual i makes an activity stop of type t be Rit. If the total 

number of activity types is T, this probability can be determined from a multinomial logit model 

as follows: 
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where tw is a column vector of exogenous variables and tβ  is the vector of parameters to be 

determined for each activity type, except for a base category. 

To relate the probability of stop making by activity type with the individual’s stop 

allocation (which is what is observed), we assume that households follow a zero-order process in 

assigning stops to activity types (i.e., the successive assignments of stops to activity-type 

categories constitutes an independent sequence, after controlling for exogenous variables).  Let 

itS be the total number of stops of activity type t made by an individual i and )0(>iS be the total 

number of stops of all activity types made by the individual i. Then i
t

it SS∑ = . 

The probability of a non-worker making k1 stops of activity type 1, k2 stops of activity 

type 2… kT stops of activity type T (given that the total number of stops made by the individual 

is k) can be given by  
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Define the following dummy variables: 
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The log likelihood function can therefore be written as  
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5.8 MODELING STOP SEQUENCING FOR NON-WORKERS 

Modeling the stop-sequence in the activity string of a non-worker requires the 

determination of the number of in-home episodes (and hence the number of tours, since the total 

number of activity stops is known), the number of stops in each tour and the activity type for 

each activity stop.  The methodology presented here is based on Misra (1999). 

Consider a non-worker who makes a total of s stops of which k1 stops are of activity type 

1, k2 stops are of activity type 2… kT stops are of activity type T.  Let the set of all feasible 

pattern strings (all permutations of k1 stops of activity type 1, k2 stops of activity type 2… kT 

stops of activity type T and each possible value r of intermediate home episodes [r=0,1,2…s-1] 

that do not contain two consecutive in home episodes) for the individual be represented byϑ . 

The first and last activity episodes of all possible pattern strings correspond to in-home activities 

and hence are not classified as intermediate in-home activity stops. Let a single member of this 

feasible choice set be g.   

Define a binary variable 1=r
gA if pattern g has r intermediate in-home episodes, 0=r

gA  

otherwise. The utility attributable to pattern string g due to the number of in-home activity stops 

can be given by 
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r �  is the utility assigned to making r intermediate in-home activity episodes, x is the 

vector of exogenous variables affecting stop making, and '
r β  is the vector of parameters to be 

determined. 

Let the number of stops in tour h (h=1,2…r+1) of the individual’s activity pattern g be sh.  

Define a binary variable 1=q
hB  if there are q stops in tour h of pattern g, 0=q

hB otherwise.  The 

utility associated with the stop distribution among the tours for pattern g is 

∑ ∑
∈

=
gMh q

q
h

q
hg Bw γ ,     (Eq. 48) 

where q
hγ  is the utility associated with assigning q stops to tour h in pattern string g and Mg is the 

set of all tours in pattern string g. 

Let the total number of activity episodes performed by the person be E (E = r+s+2). Let 

the activity pattern string be represented by ( )Ee aaaaa ,...,.....,, 321 , where ea represents the 

activity type of episode e. Let 1)( =en aδ if the activity type of episode e is n (n=1,2…T+1), 0 

otherwise.  Let mnλ  be the constant utility derived by performing activity n immediately after 

activity m and a∆ be the additional utility derived by performing activity a as the first stop of the 

day.  The Markov utility derived from the pattern string g can therefore be written as 
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The total utility gθ
~

derived from this pattern string can therefore be expressed as  

gggg w πνθ ++=~
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The probability that a non-worker will choose a particular pattern string g from among all 

possible strings ϑ  can be given by the multinomial logit formulation as 
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Define 1=giτ  if person i chose pattern string g, 0 otherwise.  The log likelihood function 

can therefore be written as 
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CHAPTER 6. SUMMARY 

There has been an increasing realization in the travel-demand modeling field that the 

conventional trip-based approach needs to be replaced with an activity-based approach that is 

behaviorally oriented.  Several comprehensive activity-based systems have been developed.  The 

current research aims at advancing the state of the art in activity-based modeling by addressing 

the activity patterns of both workers and non-workers within a household context.  

This report presents a comprehensive representation framework for travel demand 

modeling using the activity-based approach.  The framework identifies the key agents and their 

inter-relationships.  Household decisions about employment, household location, and auto 

ownership are classified as medium-term decisions.  The daily activity-travel patterns are 

classified as short-term decisions.  The framework adopts a two-level structure in which the 

medium-term decisions are modeled prior to the modeling of short-term decisions.  

This report also characterizes the activity patterns of workers and non-workers.  A 

conceptual framework developed captures the inter-personal dependencies and resource sharing 

within the households that constrain the activity-travel patterns of individuals.  These constraints 

are largely dependant on the household structure and it is very difficult to develop a single model 

to capture the interactions in all types of households.  Hence, five major types of households 

were identified based on an empirical analysis of data from the Dallas Fort Worth area.  

Representation frameworks were then developed separately for these household types. 

This report also describes the approach that has been adopted for the modeling of 

medium-term household decisions and the mathematical structures of the modeling methods to 

be used were also presented. 
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